
98-026
Nintendo

Bob Rost
January 14, 2004

98-026 February 18, 2004

Today

• Project Status

• Announcements

• Backgrounds

• PPU control registers

• Memory Mappers, Larger ROMs

• General Game Programming Tricks

98-026 February 18, 2004

Project Status

• Have you started?

• What are you doing?

• Demos!

98-026 February 18, 2004

Announcement
• “Robort Bost” is going to the

Game Developers Conference,
March 23-27

• I’m trying to go in his place

• Cancelling class March 24th would
be lame if some of you would like
to present anything relevant

• Let me know if you would like to
present something that day, and
how much time you would want

Do they mean
this Robort?

98-026 February 18, 2004

Backgrounds

• 4 Screen Buffers (Name Tables)
(32x30 tiles each)

• Horizontal vs Vertical mirroring

98-026 February 18, 2004

Name Tables

• Similar to sprites, but for the background

• 32x30 tiles per name table

• Each byte in the table is a reference to a tile
in the pattern table

• Start writing PPU memory to each name
table starting at the base address.

• Usually row order, but register $2000 will
let you write in column order

98-026 February 18, 2004

Horizontal Mirroring

• The NES only has enough
VRAM for 2 Name tables

• Horizontal mirroring wires
horizontally adjacent name
tables together.
(Changing one affects the other)

• Good for vertical scroller
games like Spy Hunter

98-026 February 18, 2004

Vertical Mirroring

• Wires vertically adjacent
name tables together

• Good for side scroller games,
like Super Mario Bros.

98-026 February 18, 2004

Attribute Table

• 32 x 30 tiles is only 960 bytes

• 64 more and we’ve got a full kilobyte

• Let’s invent a difficult way to set colors in
the background!

98-026 February 18, 2004

Attribute Table

• The attribute table determine the sub
palettes of name table tiles

• Bytes are arranged row-order

• Each byte affects a 4x4 tile area of the
background

98-026 February 18, 2004

Attribute Byte

• Affects a 4x4 tile area of the name table

• 8 bits per byte, 2 bits to set a sub palette.
A byte can set 4 sub palettes.

• Every 2 bits affects 2x2 tiles

98-026 February 18, 2004

Attribute Byte
sub palette 0 sub palette 1 sub palette 2 sub palette 3

Value of attribute byte: 0
All tiles use sub palette 0

4x4 tiles (32x32 pixels)

98-026 February 18, 2004

Attribute Byte
sub palette 0 sub palette 1 sub palette 2 sub palette 3

Value of attribute byte: 135
Binary value: 10 00 01 11

bits 0-1
sub palette 3

binary 11

bits 4-5
sub palette 0

binary 00

bits 2-3
sub palette 1

binary 01

bits 6-7
sub palette 2

binary 10

98-026 February 18, 2004

Reference Slide

Name Table 0 $2000

Attribute Table 0 $23c0

Name Table 1 $2400

Attribute Table 1 $27c0

Name Table 2 $2800

Attribute Table 2 $2bc0

Name Table 3 $2c00

Attribute Table 3 $2fc0

Name Table and Attribute Table
memory locations (PPU memory)

98-026 February 18, 2004

PPU Control Register

• bits 0-1: Current base name table (for scrolling)

• bit 2: PPU Address Increment
(0 = increment by 1, 1 = increment by 32)

• bit 3: Sprite pattern table

• bit 4: Background pattern table

• bit 5: Sprite size (0 = 8x8, 1 = 8x16)

• bit 6: unused

• bit 7: Execute NMI on Vblank (0=false, 1=true)

$2000

98-026 February 18, 2004

PPU Control Register

• bit 0: Display type (0 = color, 1 = monochrome)

• bit 1: Background clipping (0 = don’t show left 8 pixels)

• bit 2: Sprite clipping (0 = invisible in left 8 pixel column)

• bit 3: Background visiblity (0 = don’t show, 1 = show)

• bit 4: Sprite visibility (0 = don’t show, 1 = show)

• bits 5-7: Color emphasis bits

$2001

98-026 February 18, 2004

Memory Mappers

• iNES Header

• Bank Switching

• MMC3

98-026 February 18, 2004

iNES Header

• Information about the ROM
Number of PRG banks (16k each)
Number of CHR banks (8k, 2 tables each)
Mirroring Type (0 = horizontal, 1 = vertical)
Memory Mapper (0 = none, 4 = MMC3)

• Check out header.bas in the demo ROMs

98-026 February 18, 2004

Bank Switching

• The NES can only address 64k of memory

• Only 32k is for ROM (code and data)

• Large games need to be able to swap areas
of memory in and out

• Usually have a 16k bank for code and swap
16k of level data

• Memory mappers let us swap the memory

98-026 February 18, 2004

Bank Boundaries

• In ROM source, you may use assembly to
declare bank boundaries

• Banks usually have a base address of $8000
or $C000

asm
.org $8000 //base address
.bank 0 //0 = first bank

endasm

98-026 February 18, 2004

MMC3
• iNES Mapper #4

• Extra memory capability for battery-backed
save RAM

• Allows swapping 8k blocks of PRG memory

• Allows swapping 64- or 128-tile blocks of
CHR pattern table

• Allows name table mirror type switching

• Common, versatile, and easy to use

• SMB2, SMB3, SOF, Megaman 3-6, many others

98-026 February 18, 2004

MMC3

• Splits PRG region ($8000-$ffff) into 4 banks
of 8k each

• You can swap the lower banks or the middle
banks with other ROM banks. Upper bank is
hardwired to the last bank in the ROM.

• I suggest you locate your game code in the
upper banks and swap the lower banks for
level data

98-026 February 18, 2004

MMC3 Usage

• Support code on Resources page

• Example to swap lower 8k of PRG memory

gosub mmc3_use_lower_banks //use lower banks
set mmc3_command 6 //swap to first 8k bank
set mmc3_pagenum 0 //copy from first 8k of ROM
gosub mmc3_execute_command //swap

98-026 February 18, 2004

MMC3 Usage

• Example to swap first 128 tiles of first
pattern table

• Read the source file to see available
commands and functions

set mmc3_command 0 //swap 2k page to PPU $0000
set mmc3_pagenum 4 //let’s copy from here
gosub mmc3_execute_command //go!

98-026 February 18, 2004

Game Programming Tricks

“The ghettoer the bettoer”

98-026 February 18, 2004

Game Programming Tricks
• Animation

• Table Lookups

• Multiplication

• Gravity Physics

• Collision Detection

• Random Numbers

• Multi Screen Tips

I really doubt we
have time for all
of these today

98-026 February 18, 2004

Animation

Super Mario 3
Overhead Map

How many sprites?

98-026 February 18, 2004

Background Animation

• The MMC3 can swap 64 or 128 tiles at a
time in the pattern table

• ...

• Profit!

98-026 February 18, 2004

Foreground Animation

• The MMC3 lets us swap portions of the
pattern table. Sounds familiar...

• You can also use the same trick to give your
character new clothes for free (Raccoon
Mario, Tanuki Mario, Hammer Mario, SOF
with a space helmet)

98-026 February 18, 2004

Table Lookups

• Sometimes you need complex calculations

• These are hard and slow on the NES

• In many cases, you can pre-compute values
and store them in a static array, then just
look in the array when you need the value

• Useful for physics, complex movements,
exponential decay...

98-026 February 18, 2004

Multiplication

• The 6502 does not support multiplication
or division by anything other than 2

• Try the “Russian Peasant” method

• Google will help you out

98-026 February 18, 2004

Gravity

• Medieval physics

• Newtonian physics

98-026 February 18, 2004

Medieval Gravity

• Impetus, constant speed ascent and fall

• Move up a pixel per frame until you run out
of impetus. Move down a pixel per frame
until you hit the ground

• Fine for games with falling but not jumping
(Gyromite, Donkey Kong Jr, Dig Dug)

• Sometimes tolerable for jumping

98-026 February 18, 2004

Newtonian Gravity

• Newton told us that things going through
the air move in a parabola

• We can’t just “move some number of pixels
each frame”

• It’s hard to calculate a parabola on the 6502

98-026 February 18, 2004

Newtonian Gravity

• Use a lookup table

• Store delta movement for each moment in
time during a jump

• Two ways to do this...

98-026 February 18, 2004

Newtonian Gravity

• Array values are between 0 and max speed per frame (4?)

• Keep track of direction and location in array, move array
index each frame

• For a jump, immediately move near the end of the array

• Go back to 0 when we hit the ground

Method 1

gravity:
data 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1
data 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1
data 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
data 3, 3, 3, 3, 3

98-026 February 18, 2004

Newtonian Gravity

• Array values are between 0 and max speed, and between
255 and 255-max speed

• Adding large numbers is the same as subtracting small ones

• Add array value and move array index each frame

• Go back to array center when we hit the ground

Method 2

gravity:
data 253, 253, 254, 253, 254, 254, 254, 254, 254, 254
data 254, 254, 255, 254, 255, 254, 255, 255, 255, 255
data 255, 0, 255, 255, 255, 255, 0, 255, 0, 255, 0, 0, 0
//array center. no movement
data 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1
data 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3

98-026 February 18, 2004

Collision Detection

• Want to know when objects collide with
the world, or with each other

• It’s difficult and impractical to do it per pixel

• Use simple shapes, like rectangles

• Modern games still use similar methods

98-026 February 18, 2004

Collision With Ground

• Keep track of how high the ground is

• Keep track of how high your object is

• If object_y >= ground_y, it hits the ground

• Move your object to just above ground
height and reset the gravity array index for
that object

• Works well for very simple worlds, or falling
down pits of death

Simple Method

98-026 February 18, 2004

Collision With the
World

• Make a collision map, a large array
corresponding to the background screen
that tells whether each block is impassable

• Update the collision map as the game scrolls

• Test an object’s bounding rectangle against
the collision map

98-026 February 18, 2004

Collision Between Objects

• Give each object a bounding rectangle. Remember
that the object height may be different than the
sprite size. (SOF is 22 pixels tall, but his sprites
are 32 pixels tall)

• Usually you want to keep track of the direction
each was moving, to know if the goomba should
die or Mario should get hurt

98-026 February 18, 2004

Random Numbers

• Hard to make on your own

• Create from player input?

• Table lookup?

• Pseudo-random function?

98-026 February 18, 2004

Random Numbers

• I posted a pseudo-random function on the
webpage. (Did anyone test it?)

• Setting the random seed, looping on the
start screen

set random_seed 1 //anything non-zero
gosub random_number
//register A now holds a random number
set my_var a

98-026 February 18, 2004

Multi Screen Tips

• Updating the name table during gameplay is
hard.

• It’s easier to restrict your game to 2 screens
at a time. (go through doors to other
sections?)

• Infinite scrolling backgrounds are good in
space shooters

98-026 February 18, 2004

98-026 February 18, 2004

